
Q:    There seems to be a problem with compositing. Using    the CompositeLab in
/NextDeveloper/Examples on a 2-bit screen, set the following parameters and use the
SOVER operation:

Source gray=1 opacity=0.3 (white mostly transparent source)
Dest gray=0.8 opacity=1 (light gray opaque destination)

You will see that the result is the same color as the destination. Thus the 30% coverage
from the white source is having no effect at all!    Now change the source opacity to 0; this
causes no change in the result.    What's going on here?

A:    The behavior is correct. Assume the case where the source is all white and is 33%
opaque.    Say the destination is 66% white and opaque. (This assures that we are using
exact pixel values with no dithering.) The SOVER formula is:

sourceColor * sourceOpacity + destColor * (1 - sourceOpacity)

which for our case reduces to
1 * 1/3 + 2/3 * 2/3 = 7/9

which is rounded to 6/9, given that compositing only works on a per-pixel basis. Changing
the opacity all the way down to 0 simply changes the resulting pixel to 6/9, thus no color
change occurs.

Now using the parameters in the question

Source gray=1 opacity=0.3 (white mostly transparent source)
Dest gray=0.8 opacity=1 (light gray opaque destination)

We see that there are some source pixels with opacity of 0, and a few with opacity of 1/3.
Source color is 1 in all cases. There are some dest pixels with gray of 1 and others with
2/3; opacity is 1 in both cases.

Thus every resulting pixel is computed from one of four formulas:
sourceColor * sourceOpacity + destColor * (1 - sourceOpacity)
1 * 0 + 1 * (1 - 0) = 1
1 * 1/3 + 1 * (1 -1/3) = 1
1 * 0 + 2/3 * (1 -0) = 2/3
1 * 1/3 + 2/3 * (1 -1/3) = 7/9

Thus the result is equal to the dest color in all cases.

If you wish to composite in a more accurate fashion, you can use 8-bit deep grayscale
windows. However, this will use up a lot more memory and is probably not worth it.

QA712

Valid for 2.0, 3.0

